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1. Introduction

Let [n] = {1, 2, . . . , n} and let ±[n] = [n]∪{1, 2, . . . , n}, where i = −i. The symmetric 
group Sn is the group of all permutations on [n], and the hyperoctahedral group SB

n is 
the group of signed permutations on ±[n] with the property that π

(
i
)

= −π(i) for all 
i ∈ [n]. The classical Eulerian polynomials over the symmetric group Sn are defined by

An(x) =
∑

π∈Sn

xdes(π),

where des (π) is the number of descents of π, i.e., des (π) = #{i ∈ [n−1] | π(i) > π(i+1)}.
Let π = π(1)π(2) · · ·π(n) ∈ SB

n , and let neg (π) be the number of negative entries of 
π. The numbers of types A and B descent statistics of π are respectively defined by

desA(π) = #{i ∈ {1, . . . , n− 1} | π(i) > π(i + 1)},

desB(π) = #{i ∈ {0, 1, . . . , n− 1} | π(i) > π(i + 1), π(0) = 0}.

Thus desB(π) = desA(π) if π(1) > 0 and desB(π) = desA(π) + 1 if π(1) < 0. In [4], 
Brenti studied the following Eulerian polynomials of type B and their q-analogs:

Bn(x) =
∑

π∈SB
n

xdesB(π), Bn(x, q) =
∑

π∈SB
n

xdesB(π)qneg (π).

Clearly, Bn(x, 0) = An(x). Since then, there has been a growing interest in the sim-
ilar properties of Eulerian-type polynomials, including unimodality, real-rootedness, 
γ-positivity as well as algebraic and geometric interpretations, see [18,24,29,34,37,41].
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A remarkable result of Foata-Schützenberger [15] says that

An(x) =
�(n−1)/2�∑

k=0 
γ1(n, k)xk(1 + x)n−1−2k,

where γ1(n, k) is the number of permutations in Sn with k descents and without double 
descents. For π ∈ Sn, a double descent of π is an index i ∈ [n − 1] such that π(i −
1) > π(i) > π(i + 1), where we set π(0) = +∞; an interior peak of π is an index 
i ∈ {2, 3, . . . , n − 1} such that π(i − 1) < π(i) > π(i + 1); a left peak of π is an index 
i ∈ [n − 1] such that π(i − 1) < π(i) > π(i + 1), where we set π(0) = 0. Let γ2(n, k)
(resp. γ3(n, k)) be the number of permutations in Sn with k interior peaks (resp. left 
peaks). By introducing modified Foata-Strehl action, Brändén [3] deduced that

An(x) =
�(n−1)/2�∑

k=0 

1 
2n−1−2k γ2(n, k)xk(1 + x)n−1−2k. (1)

Using the theory of enriched P -partitions, Petersen [33, Proposition 4.15] obtained the 
following γ-positive expansion:

Bn(x) =
�n/2�∑
i=0 

4iγ3(n, i)xi(1 + x)n−2i. (2)

Consider the polynomials

bn(x, y) =
∑

π∈SB
n

xdesA(π)ydesB(π).

Clearly, bn(x, 1) = 2nAn(x) and bn(1, x) = Bn(x). According to [1], the number of flag 
descents of π ∈ SB

n equals desA(π)+desB(π). Hence bn(x, x) reduces to the flag descent 
polynomial. The up-down runs of π ∈ Sn are the maximal consecutive subsequences 
that are increasing or decreasing of π endowed with a 0 in the front (see [31,38,40, 
41] for details). Let udrun (π) denote the number of up-down runs of π. For example, 
udrun (623415) = udrun (0623415) = 5. Next present a unified extension of (1) and (2).

Theorem 1. For any n ⩾ 2, the bivariate polynomial bn(x, y) has the expansion formula:

bn(x, y) = (1 + y)
∑
k⩾0

4kξ(n, k)(xy)k(1 + xy)n−1−2k

+ y(1 + x)
∑
�⩾0 

4kζ(n, k)(xy)k(1 + xy)n−2−2k,

where ξ(n, k) = T (n, 2k + 1), ζ(n, k) = 2T (n, 2k + 2), and T (n, k) is the number of 
permutations in the symmetric group Sn with k up-down runs.
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As illustrations of Theorem 1, we have b1(x, y) = 1+y, b2(x, y) = (1+y+xy+xy2)+
(2y+2xy) and b3(x, y) = (1+y+10xy+10xy2+x2y2+x2y3)+(6y+6xy+6xy2+6x2y2). 
In Theorem 7, we shall establish a strong connection between the joint distribution of 
(desA,desB ,neg ) over SB

n and the joint distribution of (lap , ap , even ) over restricted 
Stirling permutations.

The study of Stirling permutations originated from the work of Ramanujan [35], when 
he considered the Taylor series expansion:

enx =
n ∑

r=0 

(nx)r

r! + (nx)n

n! Sn(x).

He claimed that

Sn(1) = n!
2 

( e 
n

)n

− 2
3 + 4 

135n + O(n−2),

which was independently proved in 1928 by Szegö and Watson. Buckholtz [6] found that

Sn(x) =
k−1∑
r=0 

1 
nr

Ur(x) + O(n−k),

where

Ur(x) = (−1)r
(

x 
1 − x

d 
dx

)r
x 

1 − x
= (−1)r Cr(x) 

(1 − x)2r+1 ,

and Cr(x) is a polynomial of degree r. Let 
{
n
k

}
be the Stirling number of the second kind, 

i.e., the number of set partitions of [n] into k blocks. In [7], Carlitz discovered that

∞ ∑
k=0

{
n + k

k

}
xk = Cn(x) 

(1 − x)2n+1 .

The polynomials Cn(x) are now known as the second-order Eulerian polynomials.
Let [n]2 denote the multiset {12, 22, . . . , n2}, where each element i appears 2 times. 

We say that the multipermutation σ of [n]2 is a Stirling permutation if σi = σj , then 
σs > σi for all i < s < j. Let Qn denote the set of all Stirling permutations of [n]2. 
For example, Q2 = {1122, 1221, 2211}. Gessel-Stanley [17] discovered that Cn(x) are 
the descent polynomials over all Stirling permutations in Qn. Recently, the theory of 
Stirling permutations has become an active research domain, see [5,21,24,25,32]. There 
are several variants of Stirling permutations, including Stirling permutations of a general 
multiset [23] and quasi-Stirling permutations [14].

For σ ∈ Qn, except where explicitly stated, we always assume that σ0 = σ2n+1 = 0. 
Let
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Asc(σ) = {σi | σi−1 < σi}, Plat(σ) = {σi | σi = σi+1}, Des(σ) = {σi | σi > σi+1},
Lap(σ) = {σi | σi−1 < σi = σi+1}, Rpd(σ) = {σi | σi−1 = σi > σi+1},
Eud(σ) = {σi | σi−1 < σi = σj > σj+1, i < j},
Apd(σ) = {σi | σi−1 < σi = σi+1 > σi+2},

Vv(σ) = {σi | σi−1 > σi < σi+1, σj−1 > σj < σj+1, σi = σj , i < j − 2}

be the sets of ascents, plateaux, descents, left ascent-plateaux, right plateau-descents, 
exterior up-down-pairs, ascent-plateau-descents, valley-valley pairs of σ, respectively. 
We use asc (σ), plat (σ), des (σ), lap (σ), rpd(σ), eud(σ), apd(σ) and vv(σ) to denote 
the numbers of ascents, plateaux, descents, left ascent-plateaux, right plateau-descents, 
exterior up-down-pairs, ascent-plateau-descents, valley-valley pairs of σ, respectively. 
The statistic vv is a new statistic. It should be noted that if σi is a valley-valley pair 
value, then the two copies of σi are both valleys.

It is now well known that

Cn(x) =
∑

σ∈Qn

xasc (σ) =
∑

σ∈Qn

xplat (σ) =
∑

σ∈Qn

xdes (σ).

The trivariate second-order Eulerian polynomials are defined by

Cn(x, y, z) =
∑

σ∈Qn

xasc (σ)yplat (σ)zdes (σ).

The study of Cn(x, y, z) was initiated by Dumont [12], who discovered that

Cn+1(x, y, z) = xyz

(
∂

∂x
+ ∂

∂y
+ ∂

∂z

)
Cn(x, y, z), (3)

which implies that Cn(x, y, z) is symmetric in its variables, i.e., it is unchanged under 
any permutation of the three variables. Bóna [2] independently found that the plateau 
statistic plat is equidistributed with the descent statistic des over Qn. The symmetry 
of the joint distribution (asc ,des ,plat ) was rediscovered by Janson [20, Theorem 2.1]. 
In [19], Haglund-Visontai introduced a refinement of Cn(x, y, z) by indexing each ascent, 
descent and plateau according to the values where they appear. Using the theory of 
context-free grammars, Chen-Fu [9] found the following result.

Proposition 2. The trivariate polynomial Cn(x, y, z) is e-positive, i.e.,

Cn(x, y, z) =
∑

i+2j+3k=2n+1

γn,i,j,k(x + y + z)i(xy + yz + zx)j(xyz)k, (4)

where the coefficient γn,i,j,k equals the number of 0-1-2-3 increasing plane trees on [n]
with k leaves, j degree one vertices and i degree two vertices.
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Throughout this paper, let us assume that γn,i,j,k is defined by (4). It follows from [9, 
eq. (4.9)] that

γn,i,j,k = 3(i + 1)γn−1,i+1,j,k−1 + 2(j + 1)γn−1,i−1,j+1,k−1 + kγn−1,i,j−1,k,

with γ1,0,0,1 = 1 and γ1,i,j,k = 0 if k = 0. For n = 2, 3, 4, the nonzero γn,i,j,k are listed 
as follows:

γ2,0,1,1 = 1, γ3,1,0,2 = 2, γ3,0,2,1 = 1, γ4,0,0,3 = 6, γ4,1,1,2 = 8, γ4,0,3,1 = 1.

In [32], we introduced Stirling permutation codes and provided numerous equidis-
tribution results as applications. The trivariate ascent-plateau polynomials are defined 
by

Nn(p, q, r) =
∑

σ∈Qn

plap (σ)qeud(σ)rrpd(σ).

From [32, Theorem 21], we see that

Nn(p, q, r) =
∑

i+2j+3k=2n+1

3iγn,i,j,k(p + q + r)j(pqr)k. (5)

One may ask the following problem.

Problem 3. Why do (4) and (5) share the same coefficients?

Let

Qn(x, y, z, p, q, r) =
∑

σ∈Qn

xasc (σ)yplat (σ)zdes (σ)plap (σ)qeud(σ)rrpd(σ). (6)

A special case of Theorem 13 gives an answer to Problem 3:

Qn(x, y, z, p, q, r) =
∑

i+2j+3k=2n+1

γn,i,j,k(x + y + z)i(xyp + xzq + yzr)j(xyzpqr)k. (7)

This paper is organized as follows. In Section 2, we first prove Theorem 1, and then we 
establish a strong connection between signed permutations and Stirling permutations. 
In Section 3, using SP-codes, we study a eight-variable polynomial Qn(x, y, z, p, q, r, s, t)
as well as a seventeen-variable polynomial, where the parameter s marks the ascent-
plateau-descent statistic, the parameter t marks the valley-valley pair statistic and

Qn(x, y, z, p, q, r, 1, 1) = Qn(x, y, z, p, q, r).

For the seventeen-variable polynomial, we find an expansion formula with the same 
coefficients as in (4), (5) and (7). Why the coefficients γn,i,j,k play such a crucial role in 
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these expansions is somewhat mysterious. From this paper, one can see that SP-code is 
the key to clarify it.

2. Eulerian polynomials and Stirling permutations

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series 
in monomials formed from letters in A. Following Chen [8], a context-free grammar over 
A is a function G : A → Q[[A]] that replaces each letter in A by a formal function over 
A. The formal derivative DG with respect to G satisfies the derivation rules:

DG(u + v) = DG(u) + DG(v), DG(uv) = DG(u)v + uDG(v).

In the theory of context-free grammars, there are two methods for studying combi-
natorics: grammatical labeling and the change of grammar, see [10,11,13,24,30,32] for 
various applications.

2.1. Proof of Theorem 1

Lemma 4. If G = {P → PD+NA, N → PD+NA, E → (A+D)E, A → 2AD, D →
2AD}, then for n ⩾ 1, we have

Dn−1
G (PE + NE)|P=A=E=1, N=y, D=xy =

∑
π∈SB

n

xdesA(π)ydesB(π). (8)

Proof. Given π ∈ SB
n . We first give a grammatical labeling of π as follows:

(i) We put a superscript P just before π(1) if π(1) > 0, while we put a superscript N
just before π(1) if π(1) < 0;

(ii) For 1 ⩽ i ⩽ n− 1, we put a superscript A right after π(i) if π(i) < π(i + 1), while 
we put a superscript D right after π(i) if π(i) > π(i + 1);

(iii) Put a superscript E at the end of π.

With this labeling, the weight of π is defined as the product of its labels. Note that the 
sum of weights of elements in SB

1 is given by PE + NE. In general, it is routine to 
verify that the insertion of n or n corresponds to one substitution rule given by G. For 
example, let π = 23154. The labeling of π is given by N2A3D1A5D4E . If we insert 6 or 
6 into π, we get

P 6D2A3D1A5D4E , N6A2A3D1A5D4E , N2A6D3D1A5D4E , N2D6A3D1A5D4E ,
N2A3A6D1A5D4E , N2A3D6A1A5D4E , N2A3D1A6D5D4E , N2A3D1D6A5D4E ,
N2A3D1A5A6D4E , N2A3D1A5D6A4E , N2A3D1A5D4A6E , N2A3D1A5D4D6E .
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In conclusion, the action of the formal derivative DG on the set of weighted signed 
permutations in SB

n gives the set of weighted signed permutations in SB
n+1. Substituting 

P = A = E = 1, N = y and D = xy, we get the desired result. �
A proof of Theorem 1:

Proof. Let G be the grammar given by Lemma 4. Consider a change of G. Setting 
P + N = a, b = PD + NA, c = AD and d = A + D, we see that

DG(a) = 2b, DG(b) = 2ac + bd, DG(c) = 2cd, DG(d) = 4c, DG(E) = dE.

Thus we get a new grammar: G′ = {a → 2b, b → 2ac+ bd, c → 2cd, d → 4c, E → dE}. 
Note that DG′(aE) = adE + 2bE and D2

G′(aE) = aE(d2 + 8c) + bE(6d). For n ⩾ 2, by 
induction, we find that there exist nonnegative integers ξ(n, k) and ζ(n, k) such that

Dn−1
G′ (aE) = aE

∑
k⩾0

4kξ(n, k)ckdn−1−2k + bE
∑
k⩾0

4kζ(n, k)ckdn−2−2k. (9)

Using Dn
G′(aE) = DG′

(
Dn−1

G′ (aE)
)
, it is easy to verify that{

ξ(n + 1, k) = (1 + 2k)ξ(n, k) + (n− 2k + 1)ξ(n, k − 1) + 1
2ζ(n, k − 1),

ζ(n + 1, k) = 2(1 + k)ζ(n, k) + (n− 2k)ζ(n, k − 1) + 2ξ(n, k),
(10)

with ξ(1, 0) = 1 and ξ(1, k) = 0 if k �= 0 and ζ(1, k) = 0 for any k. In (9), upon taking 
a = 1 + y, b = xy + y, E = 1, c = xy and d = 1 + xy, we get the desired expansion 
formula.

Let

Tn(x) =
∑

π∈Sn

xudrun (π) =
n ∑

k=1

T (n, k)xk.

The polynomials Tn(x) satisfy the recursion

Tn+1(x) = x(nx + 1)Tn(x) + x
(
1 − x2) d 

dxTn(x), (11)

with T0(x) = 1 and T1(x) = x (see [31,38]). If we set Tn(x) = x
2 T̂n(x), then it follows 

from (11) that T̂n+1(x) = (1 + x + (n− 1)x2)T̂n(x) + x
(
1 − x2) d 

dx T̂n(x).
Consider the following three polynomials

ξn(x) =
∑
k⩾0

ξ(n, k)xk, ζn(x) =
∑
k⩾0

ζ(n, k)xk, fn(x) = 2ξn(x2) + xζn(x2). (12)

From (13), we see that fn(x) satisfy the same recurrence relation and initial conditions 
as T̂n(x), so they agree. Therefore, we deduce that
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Tn(x) = x

2 
fn(x) = x

2 

(
2ξn(x2) + xζn(x2)

)
,

which yields ξ(n, k) = T (n, 2k + 1) and ζ(n, k) = 2T (n, 2k + 2). This completes the 
proof. �
2.2. Real-rooted polynomials

Let ξn(x) and ζn(x) be defined by (12). Multiplying both sides of (10) by xi and 
summing over all i, we arrive at the following result.

Proposition 5. Let ξ1(x) = 1 and ζ1(x) = 0. Then we have{
ξn+1(x) = (1 + (n− 1)x)ξn(x) + 2x(1 − x) d 

dxξn(x) + x
2 ζn(x),

ζn+1(x) = (2 + (n− 2)x) ζn(x) + 2x(1 − x) d 
dxζn(x) + 2ξn(x).

In particular, ξ2(x) = 1, ζ2(x) = 2, ξ3(x) = 1 + 2x, ζ3(x) = 6. Moreover, we have 
ξn(1) = n!

2 and ζn(1) = n!. Let RZ denote the set of real polynomials with only real 
zeros. Furthermore, denote by RZ(I) the set of such polynomials all of whose zeros are 
in the interval I.

Theorem 6. Let fn(x) = 2ξn(x2) + xζn(x2). The polynomials fn(x) satisfy the recursion

fn+1(x) = (1 + x + (n− 1)x2)fn(x) + x(1 − x2) d 
dxfn(x), f1(x) = 2. (13)

Then fn(x) ∈ RZ[−1, 0) and fn(x) interlaces fn+1(x). More precisely, fn(x) has �n−1
2 �

simple zeros in the interval (−1, 0) and the zero x = −1 with the multiplicity �n
2 �. 

Moreover, both ξn(x) and ζn(x) have only real negative simple zeros, ζ2n(x) alternates 
left of ξ2n(x) and ζ2n+1(x) interlaces ξ2n+1(x).

Below are the polynomials fn(x) for n = 2, 3, 4:

f2(x) = 2 + 2x, f3(x) = 2 + 6x + 4x2, f4(x) = 2 + 14x + 22x2 + 10x3.

In the sequel, we shall prove Theorem 6. Following [16], we say that a polynomial 
p(x) ∈ R[x] is standard if its leading coefficient is positive. Suppose that p(x), q(x) ∈ RZ. 
The zeros of p(x) are ξ1 ⩽ · · · ⩽ ξn, and that those of q(x) are θ1 ⩽ · · · ⩽ θm. We say 
that p(x) interlaces q(x) if deg q(x) = 1 + deg p(x) and the zeros of p(x) and q(x)
satisfy θ1 ⩽ ξ1 ⩽ θ2 ⩽ · · · ⩽ ξn ⩽ θn+1. We say that p(x) alternates left of q(x) if 
deg p(x) = deg q(x) and the zeros of them satisfy ξ1 ⩽ θ1 ⩽ ξ2 ⩽ · · · ⩽ ξn ⩽ θn. We 
use the notation p(x) ≺ q(x) for either p(x) interlaces q(x) or p(x) alternates left of 
q(x). A complex coefficient polynomial p(x) is said to be weakly Hurwitz stable if every 
zero of p(x) is in the closed left half of the complex plane. The following version of the 
Hermite-Biehler theorem will be used in the proof of Theorem 6.
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Hermite-Biehler Theorem ([16, Theorem   3]). Let f(x) = fE(x2)+xfO(x2) be a standard 
polynomial with real coefficients. Then f(x) is weakly Hurwitz stable if and only if both 
fE(x) and fO(x) are standard, have only nonpositive zeros, and fO(x) ≺ fE(x).

A proof of Theorem 6:

Proof. Setting an(x) = 2ξn(x), it follows from Proposition 5 that{
an+1(x) = (1 + (n− 1)x)an(x) + 2x(1 − x) d 

dxan(x) + xζn(x),
ζn+1(x) = (2 + (n− 2)x) ζn(x) + 2x(1 − x) d 

dxζn(x) + an(x).

Since fn(x) = 2ξn(x2) + xζn(x2) = an(x2) + xζn(x2), then the recursion (13) follows 
from [31, Theorem 3]. When n ⩾ 2, it is clear that fn(0) = an(0) = a1(0) = 2, 
deg(an(x)) = �n−1

2 � and deg(ζn(x)) = �n−2
2 �. By [27, Theorem 2], we see that fn(x)

interlaces fn+1(x), fn(x) has �n−1
2 � simple zeros in the interval (−1, 0) and the zero 

x = −1 with the multiplicity �n
2 �. It follows from Hermite-Biehler Theorem that both 

an(x) and ζn(x) have only real negative simple zeros, ζ2n(x) alternates left of a2n(x) and 
ζ2n+1(x) interlaces a2n+1(x). This completes the proof. �
2.3. Relationship between signed permutations and Stirling permutations

Let Q(1)
n = {σ ∈ Qn | the two copies of 1 are contiguous elements in σ}. For example,

Q(1)
1 = {11}, Q(1)

2 = {1122, 2211},

Q(1)
3 = {112233, 112332, 113322, 331122, 221133, 223311, 233211, 332211}.

Given σ ∈ Q(1)
n . Let us examine how to generate an element in Q(1)

n+1 by inserting the 

two copies of n+1. Note that there are 2n possibilities. Thus #Q(1)
n+1 = 2n#Q(1)

n = 2nn!. 
Recall that #SB

n = 2nn!. It is natural to explore the relationship between Q(1)
n+1 and 

SB
n . We need some notations. For σ ∈ Qn, a value σi is called

• an ascent-plateau if σi−1 < σi = σi+1, where 2 ⩽ i ⩽ 2n− 1;
• a left ascent-plateau if σi−1 < σi = σi+1, where 1 ⩽ i ⩽ 2n− 1 and σ0 = 0.

Let ap (σ) (resp. lap (σ)) be the number of ascent-plateaux (resp. left ascent-plateaux) in 
σ. The ascent-plateau polynomials (also called 1/2-Eulerian polynomials) Mn(x) [29,36] 
and the left ascent-plateau polynomials M̃n(x) [25,29] can be defined as follows:

Mn(x) =
∑

σ∈Qn

xap (σ), M̃n(x) =
∑

σ∈Qn

xlap (σ).

From [28, Proposition 1], we see that
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2nxAn(x) =
n ∑

i=0 

(
n

i 

)
M̃i(x)M̃n−i(x), Bn(x) =

n ∑
i=0 

(
n

i 

)
Mi(x)M̃n−i(x).

Let Q(0)
n+1 be the set of Stirling permutations of the multiset {1, 22, 32, . . . , n2, (n +

1)2}, where only the element 1 appears one time. Note that Q(0)
n

∼ = Q(1)
n . So #Q(0)

n+1 =
#Q(1)

n+1 = 2nn!. For σ ∈ Q(0)
n+1, we say that σi is an even value if the first appearance of σi

occurs at an even position of σ, where σi ∈ {2, 3, . . . , n+1}. Let even (σ) be the number 
of even indices in σ. For example, even (122) = 1, even (221) = 0 and even (23321) = 1.

Theorem 7. For n ⩾ 1, we have

∑
π∈SB

n

xdesA(π)+1ydesB(π)qneg (π) =
∑

σ∈Q(0)
n+1

xlap (σ)yap (σ)qeven (σ). (14)

Proof. Using the same labeling scheme for π ∈ SB
n as in the proof of Lemma 4, and 

attaching a weight q to each negative element, one can easily verify that

Dn−1
G1

(PE + qNE)|P=x, A=E=1, N=xy, D=xy =
∑

π∈SB
n

xdesA(π)+1ydesB(π)qneg (π), (15)

where the grammar G1 is defined by G1 = {P → PD + qNA, N → PD + qNA, E →
(A + qD)E, A → (1 + q)AD, D → (1 + q)AD}.

Given σ ∈ Q(0)
n . We now introduce a labeling scheme for σ:

(i) If σ1 = σ2, then σ1 is a left ascent-plateau, and we label the two positions just 
before and right after σ1 by a subscript label α. For any other ascent-plateau σi, 
i.e., i ⩾ 2 and σi−1 < σi = σi+1, we label the two positions just before and right 
after σi by a label β;

(ii) If σ1 < σ2, then we use the superscript γ to mark the first position (just before σ1) 

and the last position (at the end of σ), and denoted by 
γ︷ ︸︸ ︷

σ1σ2 · · ·σ2n;
(iii) For any other element, we label it by a subscript w;
(iv) We attach a superscript label q to every even value.

As illustrations, the labeled elements in Q(0)
2 can be listed as follows:

γ︷ ︸︸ ︷
1 2q︸︷︷︸

β

2, 2 ︸︷︷︸
α 

2w1w.

Let us examine how to generate the elements in Q(0)
3 by inserting two copies of 3:
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γ︷ ︸︸ ︷
1 2q︸︷︷︸

β

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 ︸︷︷︸
α 

3w1 2q︸︷︷︸
β

2w,

γ︷ ︸︸ ︷
1 3q︸︷︷︸

β

3w2qw2,

γ︷ ︸︸ ︷
1w2q 3 ︸︷︷︸

β

3w2,

γ︷ ︸︸ ︷
1 2q︸︷︷︸

β

2 3q︸︷︷︸
β

3,

2 ︸︷︷︸
α 

2w1w →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 ︸︷︷︸
α 

3w2w2w1w,

γ︷ ︸︸ ︷
2 3q︸︷︷︸

β

3w2w1,

2 ︸︷︷︸
α 

2 3 ︸︷︷︸
β

3w1w,

2 ︸︷︷︸
α 

2w1 3q︸︷︷︸
β

3w.

(16)

Note that the labels w always appear even times. So we can read the labels w two 
by two from left to right, and set W = w2. In the other words, we use W to record 
pairwise nearest elements with labels w from left to right. Note that the sum of weights 
of elements in Q(0)

2 is given by αw2 + qβγ = αW + qβγ. By induction, as illustrated 
by (16), we see that if

G2 = {α → αW + qβγ, γ → αW + qβγ, β → (1 + q)βW, W → (1 + q)βW},

then

Dn−1
G2

(αW + qβγ)|α=x, γ=W=1, β=xy =
∑

σ∈Q(0)
n+1

xlap (σ)yap (σ)qeven (σ). (17)

Note that

DG1(PE + qNE) = PE(A + D + 2qD) + qNE(2A + qA + qD),

DG2(αW + qβγ) = αW (W + β + 2qβ) + qβγ(2W + qW + qβ).

When n ⩾ 1, by induction, it is routine to check that

Dn
G1

(PE + qNE) = PEfn(A,D; q) + qNEgn(A,D; q),

Dn
G2

(αW + qβγ) = αWfn(W,β; q) + qβγgn(W,β; q),

where fn(x, y; q) and gn(x, y; q) satisfy the recurrence system:{
fn+1(x, y; q) = (x + y + qy)fn(x, y; q) + DG3 (fn(x, y; q)) + qygn(x, y; q),
gn+1(x, y; q) = (x + qx + qy)gn(x, y; q) + DG3(gn(x, y; q)) + xfn(x, y; q),

with f1(x, y; q) = g1(x, y; q) = 1 and G3 = {x → (1 + q)xy, y → (1 + q)xy}. Therefore, 
if we make the substitutions: PE ⇔ αW, NE ⇔ βγ, A ⇔ W, D ⇔ β, we obtain

Dn−1
G1

(PE + qNE)|P=x, A=E=1, N=xy, D=xy = Dn−1
G2

(αγ + qβδ)|α=x, γ=W=1, β=xy,
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and so we arrive at (14). This completes the proof. �
For π ∈ Sn, an excedance of π is an index i such that π(i) > i. Let exc (π) be the 

number of excedances of π. A permutation is called a derangement if it has no fixed 
points. Let Dn be the set of all derangements in Sn. The derangement polynomials and 
the binomial-Eulerian polynomials are respectively defined by

dn(x) =
∑
π∈Dn

xexc (π), Ãn(x) = 1 + x
n ∑

k=1

(
n

k

)
Ak(x).

The first few of dn(x) and Ãn(x) are given as follows:

d1(x) = 0, d2(x) = x, d3(x) = x + x2, d4(x) = x + 7x2 + x3;

Ã1(x) = 1 + x, Ã2(x) = 1 + 3x + x2, Ã3(x) = 1 + 7x + 7x2 + x3.

The reader is referred to [22] for the recent progress on the binomial-Eulerian polynomi-
als.

Consider the following polynomials

bn(x, y, q) =
∑

σ∈Q(0)
n+1

xlap (σ)yap (σ)qeven (σ).

Combining (14), [4, Eq. (14)] and [26, Eq. (5)], we discover the following result.

Corollary 8. We have

bn(1, y,−1) =
∑

σ∈Q(0)
n+1

yap (σ)(−1)even (σ) = (1 − y)n,

bn

(
1, y,−1 

y

)
=

∑
σ∈Q(0)

n+1

yap (σ)−even (σ)(−1)even (σ) = y

(
y − 1
y

)n

dn(y),

bn (1, y,−y) =
∑

σ∈Q(0)
n+1

yap (σ)+even (σ)(−1)even (σ) = (1 − y)nÃn(y).

The type D Coxeter group SD
n is the subgroup of SB

n consisting of signed permutations 
with an even number of negative entries. It follows from Theorem 7 that

#{σ ∈ Q(0)
n+1 | even (σ) is odd} = #{σ ∈ Q(0)

n+1 | even (σ) is even} = #SD
n = 2n−1n!.

Let desD(π) = #{i ∈ [n] | π(i − 1) > π(i)}, where π(0) = −π(2). The type D Eulerian 
polynomial is defined by
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Dn(x) =
∑

π∈SD
n

xdesD(π).

Stembridge [39, Lemma 9.1] obtained that Dn(x) = Bn(x) − n2n−1xAn−1(x) for n ⩾ 2. 
We end this section by posing two problems.

Problem 9. Could we find a combinatorial interpretation of the type D Eulerian poly-
nomial Dn(x) over the set {σ ∈ Q(0)

n+1 | even (σ) is even}?

Problem 10. How to relate Q(0)
n and {σ ∈ Q(0)

n | even (σ) is even} to group operations?

3. Eight-variable and seventeen-variable polynomials

3.1. Definitions, notation and preliminary results

In equivalent forms, Dumont [12], Haglund-Visontai [19], Chen-Hao-Yang [10] and 
Ma-Ma-Yeh [30] all showed that

Dn
G(x) = Cn(x, y, z),

where G = {x → xyz, y → xyz, z → xyz}. By the change of grammar u = x+y+z, v =
xy + yz + zx and w = xyz, it is clear that DG(u) = 3w, DG(v) = 2uw, DG(w) = vw. 
So we get a grammar

H = {w → vw, u → 3w, v → 2uw}. (18)

For any n ⩾ 1, Chen-Fu [9] discovered that

Cn(x, y, z) = Dn
G(x) = Dn−1

H (w) =
∑

i+2j+3k=2n+1

γn,i,j,ku
ivjwk. (19)

Substituting u → x + y + z, v → xy + yz + zx and w → xyz, one can immediately 
obtain (4).

A rooted tree of order n with the vertices labeled 1, 2, . . . , n, is an increasing tree if 
the node labeled 1 is distinguished as the root, and the labels along any path from the 
root are increasing. An increasing plane tree is an increasing tree with the children of 
each vertex are linearly ordered.

Definition 11. A ternary increasing tree of size n is an increasing plane tree with 3n+ 1
nodes in which each interior node has a label and three children (a left child, a middle 
child and a right child), and exterior nodes have no children and no labels.

Let Tn denote the set of ternary increasing trees of size n, see Fig. 1 for instance. 
For any T ∈ Tn, it is clear that T has exactly 2n + 1 exterior nodes. Let exl(T )
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1

2

2 2

1 1

1

2

2 2

1 1

1

1 1
2

2 2

Fig. 1. The ternary increasing trees of order 2 encoded by 2211, 1221, 1122, and their SP-codes are given by 
((0, 0), (1, 1)), ((0, 0)(1, 2)) and ((0, 0)(1, 3)), respectively.

(resp. exm(T ), exr(T )) be the number of exterior left nodes (resp. exterior middle nodes, 
exterior right nodes) in T . Using a recurrence relation that is equivalent to (3), Du-
mont [12, Proposition 1] found that∑

σ∈Qn

xasc (σ)yplat (σ)zdes (σ) =
∑
T∈Tn

xexl(T )yexm(T )zexr(T ). (20)

A bijective proof of (20) can be found in the proof of [21, Theorem 1]. For the con-
venience of the reader, we present a brief description of it. Given T ∈ Tn. Between the 
3 edges of T going out from a node labeled v, we place 2 integers v. Now we perform 
the depth-first traversal and encode the tree T by recording the sequence of the labels 
visited as we traverse around T . The encoded sequence, denoted as φ(T ), is a Stirling 
permutation. Given σ ∈ Qn. We proceed recursively by decomposing σ as u11u21u3, 
where the ui’s are again Stirling permutations. The smallest label in each ui is attached 
to the root node labeled 1. One can recursively apply this procedure to each ui to ob-
tain the tree representation, and φ−1(σ) is a ternary increasing tree. Using φ, one can 
immediately find that the identity (20) holds.

For σ ∈ Qn, let

Dplat(σ) = {σi | σi−1 > σi = σi+1}, Dasc(σ) = {σi | σi−1 < σi < σi+1},

Dd(σ) = {σi | σi−1 > σi = σj > σj+1, i < j},

Uu(σ) = {σi | σi−1 < σi = σj < σj+1, i < j},

Ddes(σ) = {σi | σi−1 > σi > σi+1}, Pasc(σ) = {σi | σi−1 = σi < σi+1},

Dav(σ) = {σi | σi−1 < σi < σi+1 & σj−1 > σj < σj+1 & σi = σj , i < j},

Dpa(σ) = {σi | σi−1 > σi = σi+1 < σi+2},

Vdd(σ) = {σi | σi−1 > σi < σi+1 & σj−1 > σj > σj+1 & σi = σj , i < j}.

denote the sets of descent-plateaux, double ascents, down-down pairs, up-up pairs, 
double descents, plateau-ascents, double ascent-valley pairs, descent-plateau-ascents 
and valley-double descent pairs of σ, respectively. Let dplat(σ) (resp. dasc (σ), dd(σ), 
uu(σ), ddes (σ), pasc(σ), dav(σ) dpa(σ), vdd(σ)) denote the number of descent-plateaux 
(resp. double ascents, down-down pairs, up-up pairs, double descents, plateau-ascents, 
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double ascent-valley pairs, descent-plateau-ascents, valley-double descent pairs) in σ. It 
should be noted that the statistics dav, dpa, vdd are all new statistics.

In the sequel, we give a summary of Stirling permutation codes. Following [32, p. 10], 
any ternary increasing tree of size n can be built up from the root 1 by successively 
adding nodes 2, 3, . . . , n. Clearly, node 2 is a child of the root 1 and the root 1 has at 
most three children. For 2 ⩽ i ⩽ n, when node i is inserted, we distinguish three cases:

(c1) if it is the left child of a node v ∈ [i− 1], then the node i is coded as [v, 1];
(c2) if it is the middle child of a node v ∈ [i− 1], then the node i is coded as [v, 2];
(c3) if it is the right child of a node v ∈ [i− 1], then the node i is coded as [v, 3].

Thus the node i is coded as a 2-tuple (ai−1, bi−1), where 1 ⩽ ai−1 ⩽ i− 1, 1 ⩽ bi−1 ⩽ 3
and (ai, bi) �= (aj , bj) for all 1 ⩽ i < j ⩽ n− 1. For convenience, we name this build-tree 
code as Stirling permutation code. By convention, the root 1 is coded as (0, 0).

Definition 12 ([32]). A 2-tuples sequence Cn = ((0, 0), (a1, b1), (a2, b2) . . . , (an−1, bn−1))
of length n is called a Stirling permutation code (SP-code for short) if 1 ⩽ ai ⩽ i, 
1 ⩽ bi ⩽ 3 and (ai, bi) �= (aj , bj) for all 1 ⩽ i < j ⩽ n− 1.

Let CQn be the set of SP-codes of length n. In particular, we have

CQ1 = {(0, 0)}, CQ2 = {(0, 0)(1, 1), (0, 0)(1, 2), (0, 0)(1, 3)}.

We now describe a bijection Γ between Qn and CQn. There are three cases to obtain 
an element of Qn from an element σ ∈ Qn−1 by inserting the two copies of n between 
σi and σi+1: σi < σi+1, σi = σi+1 or σi > σi+1. Set Γ(11) = (0, 0). When n ⩾ 2, the 
bijection Γ : Qn → CQn can be defined as follows:

(c1) σi < σi+1 if and only if (an−1, bn−1) = (σi+1, 1);
(c2) σi = σi+1 if and only if (an−1, bn−1) = (σi+1, 2);
(c3) σi > σi+1 if and only if (an−1, bn−1) = (σi, 3).

As discussed in [32], combining the bijections φ (from Stirling permutations to ternary 
increasing trees) and Γ (from ternary increasing trees to Stirling permutation codes), we 
obtain Table 1, which contains the correspondences of set valued statistics on Stirling 
permutations and SP-codes. It should be noted that the last four are new correspon-
dences. 

3.2. Main results

In order to study the six-variable polynomials defined by (6), we find that it would 
be necessary to introduce the following eight-variable polynomials:
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Table 1
The correspondences of statistics on Stirling permutations and SP-codes.

Statistics on Stirling permutation Statistics on SP-code 
Asc (ascent) [n] − {ai | (ai, 1) ∈ Cn}
Plat (plateau) [n] − {ai | (ai, 2) ∈ Cn}
Des (descent) [n] − {ai | (ai, 3) ∈ Cn}
Lap (left ascent-plateau) [n] − {ai | (ai, 1) or (ai, 2) ∈ Cn}
Rpd (right plateau-descent) [n] − {ai | (ai, 2) or (ai, 3) ∈ Cn}
Eud (exterior up-down pair) [n] − {ai | (ai, 1) or (ai, 3) ∈ Cn}
Dasc (double ascent) {ai | (ai, 1) / ∈ Cn & (ai, 2) ∈ Cn}
Dplat (descent-plateau) {ai | (ai, 1) ∈ Cn & (ai, 2) / ∈ Cn}
Ddes (double descent) {ai | (ai, 2) ∈ Cn & (ai, 3) / ∈ Cn}
Pasc (plateau-ascent) {ai | (ai, 2) / ∈ Cn & (ai, 3) ∈ Cn}
Uu (up-up pair) {ai | (ai, 1) / ∈ Cn & (ai, 3) ∈ Cn}
Dd (down-down pair) {ai | (ai, 1) ∈ Cn & (ai, 3) / ∈ Cn}
Apd (ascent-plateau-descent) {ai | (ai, 1) / ∈ Cn & (ai, 2) / ∈ Cn & (ai, 3) / ∈ Cn}
Vv (valley-valley pair) {ai | (ai, 1) ∈ Cn & (ai, 2) ∈ Cn & (ai, 3) ∈ Cn}
Dav (double ascent-valley pair) {ai | (ai, 1) / ∈ Cn & (ai, 2) ∈ Cn & (ai, 3) ∈ Cn}
Dpa (descent-plateau-ascent) {ai | (ai, 1) ∈ Cn & (ai, 2) / ∈ Cn & (ai, 3) ∈ Cn}
Vdd (valley-double descent pair) {ai | (ai, 1) ∈ Cn & (ai, 2) ∈ Cn & (ai, 3) / ∈ Cn}

Qn(x, y, z, p, q, r, s, t) =
∑

σ∈Qn

xasc (σ)yplat (σ)zdes (σ)plap (σ)qeud(σ)rrpd(σ)sapd(σ)tvv(σ).

where apd(σ) and vv(σ) are the numbers of ascent-plateau-descents and valley-valley 
pairs of σ, respectively. In particular, Q1 = xyzpqrs and Q2 = xyzpqrs(xyp + xzq +
yzr). For convenience, we set Qn := Qn(x, y, z, p, q, r, s, t). We are now ready to answer 
Problem 3.

Theorem 13. For any n ⩾ 1, we have the following decomposition

Qn(x, y, z, p, q, r, s, t)

= tn
∑

i+2j+3k=2n+1

γn,i,j,k

(
x + y + z

t 

)i (
xyp + xzq + yzr

t 

)j (xyzpqrs
t 

)k

.

We next relate the polynomial Qn to a five-variable polynomial.

Theorem 14. The polynomials Qn := Qn(x, y, z, p, q, r, s, t) can be expanded as follows:

Qn =
(
x + y + z

3 

)n

×Qn

(
1, 1, 1, 3xyp 

x + y + z
,

3xzq 
x + y + z

,
3yzr 

x + y + z
,
s(x + y + z)2

9xyz ,
3t 

x + y + z

)
.

Since Cn(x, y, z) = Qn(x, y, z, 1, 1, 1, 1, 1), we obtain

Cn(x, y, z) =
∑

σ∈Qn

(xy)lap (σ)(xz)eud(σ)(yz)rpd(σ)(xyz)− apd(σ)
(
x + y + z

3 

)αn(σ)

, (21)
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where αn(σ) = n + 2 apd(σ) − lap (σ) − eud(σ) − rpd(σ) − vv(σ).

It should be noted that Theorem 13 implies that the following two results are equiv-
alent:

• the triple statistic (asc ,plat ,des ) is a symmetric distribution over Qn;
• the triple statistic (lap , eud, rpd) is a symmetric distribution over Qn.

Define

Mn(β1, β3, β5) =
∑

σ∈Qn

β
dplat(σ)
1 β

uu(σ)
4 β

ddes (σ)
5 ,

Pn(α1, α2, α3) =
∑

σ∈Qn

α
dav(σ)
1 α

dpa(σ)
2 α

vdd(σ)
3 ,

En(β1, β2, β3, β4, β5, β6) =
∑

σ∈Qn

β
dplat(σ)
1 β

dasc (σ)
2 β

dd(σ)
3 β

uu(σ)
4 β

ddes (σ)
5 β

pasc(σ)
6 ,

α(σ) = α
dav(σ)
1 α

dpa(σ)
2 α

vdd(σ)
3 ,

β(σ) = β
dplat(σ)
1 β

dasc (σ)
2 β

dd(σ)
3 β

uu(σ)
4 β

ddes (σ)
5 β

pasc(σ)
6 .

Let Fn denote the following seventeen-variable polynomials:

Fn :=
∑

σ∈Qn

α(σ)β(σ)xasc (σ)yplat (σ)zdes (σ)plap (σ)qeud(σ)rrpd(σ)sapd(σ)tvv(σ).

We can now present a generalization of Theorem 13.

Theorem 15. For any n ⩾ 1, the seventeen-variable polynomial Fn has the expansion 
formula:

Fn = tn
∑

i+2j+3k=2n+1

γn,i,j,k

(
δ2
t 

)i (
δ1
t 

)j (
δ

t 

)k

, (22)

where δ = xyzpqrs, δ1 = β4β6xyp+ β2β5xzq + β1β3yzr and δ2 = α1β2β4x+ α2β1β6y +
α3β3β5z.

A special case of (22) is given as follows.

Corollary 16. The trivariate polynomial Mn(β1, β4, β5) is e-positive. More precisely,

Mn(β1, β4, β5) =
∑

i+2j+3k=2n+1

γn,i,j,k(β1 + β4 + β5)i+j .
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[P ]
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1
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1
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1

2

Fig. 2. Simplified ternary increasing trees, Q2 = xyzpqrs(xyp + xzq + yzr) = PP1. 

As a unified extension of Nn(p, q, r) and Pn(α1, α2, α3), consider the six-variable poly-
nomials

NPn(p, q, r, α1, α2, α3) =
∑

σ∈Qn

plap (σ)qeud(σ)rrpd(σ)α
dav(σ)
1 α

dpa(σ)
2 α

vdd(σ)
3 .

Corollary 17. The six-variable polynomials NPn(p, q, r, α1, α2, α3) can be expanded as 
follows:

NPn(p, q, r, α1, α2, α3) =
∑

i+2j+3k=2n+1

γn,i,j,k(α1 + α2 + α3)i(p + q + r)j(pqr)k.

When p = q = r = 1, we see that the polynomials Pn(α1, α2, α3) are e-positive, i.e.,

Pn(α1, α2, α3) =
∑

i+2j+3k=2n+1

γn,i,j,k3j(α1 + α2 + α3)i.

Note that

En(β1, β2, β3, β4, β5, β6)

=
∑

i+2j+3k=2n+1

γn,i,j,k (β2β4 + β1β6 + β3β5)i (β4β6 + β2β5 + β1β3)j .

Corollary 18. We have En(x, y, 1, 1, 1, 1) = En(1, 1, x, y, 1, 1) = En(1, 1, 1, 1, x, y) and the 
polynomials En(x, y, 1, 1, 1, 1) are e-positive.

3.3. Proof of Theorem 13

A simplified ternary increasing tree is a ternary increasing tree with no exterior nodes. 
In Fig. 2, we list the simplified ternary increasing trees of order 2, where the left figure 
represents the three different figures in the right. The degree of a vertex in a simplified 
ternary increasing tree is meant to be the number of its children. 

The weight W1 of σ ∈ Qn is defined by

W1(σ) = xasc (σ)yplat (σ)zdes (σ)plap σ)qeud(σ)rrpd(σ)sapd(σ)tvv(σ).

Using Table 1, one can get the corresponding weight of Cn ∈ CQn, and we use W2(Cn)
to denote it, see (27) for a more general case. In other words, if Γ(σ) = Cn, then 
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W1(σ) = W2(Cn). In the following, we always set P := xyzpqrs, P1 := xyp+ xzq + yzr

and P2 := x + y + z.
It is clear that W1(11) = W2((0, 0)) = xyzpqrs = P . When n = 2, the weights of 

elements in Q2 and CQ2 can be listed as follows:

2211 ↔ (0, 0)(1, 1)︸ ︷︷ ︸
xy2z2pqr2s=Pyzr 

, 1221 ↔ (0, 0)(1, 2)︸ ︷︷ ︸
x2yz2pq2rs=Pxzq 

, 1122 ↔ (0, 0)(1, 3)︸ ︷︷ ︸
x2y2zp2qrs=Pxyp 

,

and the sum of weights is given by P (xyp + xzq + yzr) = PP1.
Given Cn = (0, 0)(a1, b1)(a2, b2) · · · (an−1, bn−1) ∈ CQn. Consider the elements in 

CQn+1 generated from Cn by appending the 2-tuples (an, bn), where 1 ⩽ an ⩽ n and 
1 ⩽ bn ⩽ 3. Let T be the corresponding simplified ternary increasing tree of Cn. We can 
add n+1 to T as a child of a vertex, which is not of degree three. Let T ′ be the resulting 
simplified ternary increasing tree. We first give a labeling of T as follows. Label a leaf 
of T by P , a degree one vertex by P1, a degree two vertex by P2 and a degree three 
vertex by t. It is clear that the contribution of any leaf to the weight is xyzpqrs, so we 
set P = xyzpqrs.

The 2-tuples (an, bn) can be divided into three classes:

• If an �= ai for all 1 ⩽ i ⩽ n−1, then we must add n+1 to a leaf of T . This operation 
corresponds to the following change of weights:

W2(Cn) → W2(Cn+1) = W2(Cn)(xyp + xzq + yzr), (23)

which yields the substitution P → PP1. The contribution of any leaf to the weight 
is xyzpqrs and that of a degree one vertex is xyp+xzq+ yzr (which represents that 
this vertex may have a left child, a middle child or a right child). When we compute 
the corresponding weights of Stirling permutations, it follows from (23) that we need 
to set P1 = xyp + xzq + yzr.

• If there is exactly one 2-tuple (ai, bi) in Cn such that an = ai, then we must add 
n+1 to T as a child of the node ai. Note that the node ai already has one child, and 
n+1 becomes the second child of ai. There are six cases to add n+1. This operation 
corresponds to the substitution P1 → 2PP2. Since we have six cases to insert n + 1
and the sum of increased weights is 2(x + y + z), so we set P2 = x + y + z.

• If there are exactly two 2-tuples (ai, bi) and (aj , bj) in Cn such that an = ai = aj
and i < j, then we must add n + 1 to T as the third child of ai, and n + 1 becomes 
a leaf with label P . This operation corresponds to the substitution P2 → 3tP .

The aforementioned three cases exhaust all the possibilities to construct SP-codes of 
length n + 1 from a SP-code of length n by appending 2-tuples (an, bn). In conclusion, 
each case corresponds to an application of the substitution rules defined by the following 
grammar:
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I = {P → PP1, P1 → 2PP2, P2 → 3tP}. (24)

Note that the sum of degrees of all vertices in a simplified ternary increasing tree in 
Tn is n. Setting w = P , v = P1 and u = P2, it follows from (19) that

Qn = Dn
G(x) = Dn−1

I (P ) = tn
∑

i+2j+3k=2n+1

γn,i,j,k

(
P2

t 

)i (
P1

t 

)j (
P

t 

)k

. (25)

Upon taking P = xyzpqrs, P1 = xyp + xzq + yzr and P2 = x + y + z, we arrive at 
Theorem 13. �.

3.4. Proof of Theorem 14

Recall that Qn := Qn(x, y, z, p, q, r, s, t). Let

Rn(P, P1, P2, t) = tn
∑

i+2j+3k=2n+1

γn,i,j,k

(
P2

t 

)i (
P1

t 

)j (
P

t 

)k

.

Note that deg(P ) + deg(P1) + deg(P2) + deg(t) = n in any term of Rn(P, P1, P2, t). Set

Rn(P, P1, P2, t) = Pn
2 R̃n

(
P

P2
,
P1

P2
,
t 
P2

)
.

Upon taking P = xyzpqrs, P1 = xyp+xzq+yzr and P2 = x+y+z, it follows from (25)
that

Qn = Rn(P, P1, P2, t) = (x+y+z)nR̃n

(
xyzpqrs 
x + y + z

,
xyp + xzq + yzr

x + y + z 
,

t 
x + y + z

)
. (26)

Note that

Qn(1, 1, 1, p, q, r, s, t) = Rn(pqrs, p + q + r, 3, t) = 3nR̃n

(
pqrs

3 
,
p + q + r

3 
,
t 
3

)
.

Substituting

p → 3xyp 
x + y + z

, q → 3xzq 
x + y + z

, r → 3yzr 
x + y + z

, s → s(x + y + z)2

9xyz , t → 3t 
x + y + z

,

we find that

1
3pqrs →

xyzpqrs 
x + y + z

, 
p + q + r

3 
→ xyp + xzq + yzr

x + y + z 
, 

1
3 t →

t 
x + y + z

.

It follows from (26) that
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Qn =
(
x + y + z

3 

)n

×Qn

(
1, 1, 1, 3xyp 

x + y + z
,

3xzq 
x + y + z

,
3yzr 

x + y + z
,
s(x + y + z)2

9xyz ,
3t 

x + y + z

)
,

as desired. Since Cn(x, y, z) = Qn(x, y, z, 1, 1, 1, 1, 1), it follows that

Cn(x, y, z) =
(
x + y + z

3 

)n

×Qn

(
1, 1, 1, 3xy 

x + y + z
,

3xz 
x + y + z

,
3yz 

x + y + z
,
(x + y + z)2

9xyz ,
3 

x + y + z

)
,

which yields (21). This completes the proof. �.

3.5. Proof of Theorem 15

Given a SP-code Cn = ((0, 0), (a1, b1), (a2, b2) . . . , (an−1, bn−1)). We make the sym-
bols:

j = #{ai | (ai, j) / ∈ Cn},

j1, j2 = #{ai | (ai, j1) / ∈ Cn & (ai, j2) / ∈ Cn},

j1, j2, j3 = #{ai | (ai, j1) / ∈ Cn & (ai, j2) / ∈ Cn & (ai, j3) / ∈ Cn},

j = #{ai | (ai, j) ∈ Cn},

j1, j2 = #{ai | (ai, j1) ∈ Cn & (ai, j2) ∈ Cn},

j1, j2, j3 = #{ai | (ai, j1) ∈ Cn & (ai, j2) ∈ Cn & (ai, j3) ∈ Cn},

j1 j2 = #{ai | (ai, j1) / ∈ Cn & (ai, j2) ∈ Cn},

j1 j2, j3 = #{ai | (ai, j1) / ∈ Cn & (ai, j2) ∈ Cn & (ai, j3) ∈ Cn}.

Recall that

α(σ) = α
dav(σ)
1 α

dpa(σ)
2 α

vdd(σ)
3 , β(σ) = β

dplat(σ)
1 β

dasc (σ)
2 β

dd(σ)
3 β

uu(σ)
4 β

ddes (σ)
5 β

pasc(σ)
6 .

The weight W3 of σ ∈ Qn is defined by

W3 := α(σ)β(σ)xasc (σ)yplat (σ)zdes (σ)plap (σ)qeud(σ)rrpd(σ)sapd(σ)tvv(σ).

It follows from Table 1 that the corresponding weight W4 of Cn ∈ CQn is given as 
follows:
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W4 := α(Cn)β(Cn)x 1 y 2 z 3 p 1,2 
q

1,3 
r

2,3 
s

1,2,3 
t

1,2,3
. (27)

where

α(Cn) = α
1 2, 3
1 α

2 1, 3
2 α

3 1, 2
3 ,

β(Cn) = β
2 1

1 β
1 2

2 β
3 1

3 β
1 3

4 β
3 2

5 β
2 3

6 .

Let T be the corresponding simplified ternary increasing tree of Cn. A labeling of T as 
follows. Label a leaf of T by δ, a degree one vertex by δ1, a degree two vertex by δ2 and 
a degree three vertex by t. Consider all the possibilities to construct SP-codes of length 
n + 1 from a SP-code of length n by appending 2-tuples (an, bn). In the same way as 
in the proof of Theorem 13, each case corresponds to an application of the substitution 
rules defined by the following grammar:

J = {δ → δδ1, δ1 → 2δδ2, δ2 → 3tδ},

where δ = xyzpqrs, δ1 = β4β6xyp+ β2β5xzq + β1β3yzr and δ2 = α1β2β4x+ α2β1β6y +
α3β3β5z. Setting w = δ, v = δ1 and u = δ2, as in (25), we get

Fn = Dn−1
J (δ) = tn

∑
i+2j+3k=2n+1

γn,i,j,k

(
δ2
t 

)i (
δ1
t 

)j (
δ

t 

)k

.

Then upon taking δ = xyzpqrs, δ1 = β4β6xyp+β2β5xzq+β1β3yzr and δ2 = α1β2β4x+
α2β1β6y + α3β3β5z, we arrive at (22), as desired. This completes the proof. �.
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